Lecture 16 on Nov. 072013

In the last lecture, an index of z_{0} with respect to a closed curve γ has been introduced. Now we study some properties of the index $n\left(\gamma, z_{0}\right)$. Since z_{0} keeps away from γ, we can find a tiny disk $B\left(z_{0}, \epsilon\right)$ so that $B\left(z_{0}, \epsilon\right)$ has no intersection with γ. here $B\left(z_{0}, \epsilon\right)$ denotes the disk centered at z_{0} with radius ϵ. Clearly if ϵ is small enough, we have $|z-w| \geq c^{*}$ for all z in $B\left(z_{0}, \epsilon\right)$ and w on $\gamma . c^{*}$ is a positive constant. Choosing z an arbitrary point in $B\left(z_{0}, \epsilon\right)$, we have

$$
\begin{aligned}
\left|n(\gamma, z)-n\left(\gamma, z_{0}\right)\right| & =\frac{1}{2 \pi}\left|\int_{\gamma} \frac{1}{w-z}-\frac{1}{w-z_{0}} \mathrm{~d} w\right|=\frac{\left|z-z_{0}\right|}{2 \pi}\left|\int_{\gamma} \frac{1}{(w-z)\left(w-z_{0}\right)} \mathrm{d} w\right| \\
& \leq \frac{\left|z-z_{0}\right|}{2 \pi} \int_{\gamma} \frac{1}{|w-z|\left|w-z_{0}\right|}|\mathrm{d} w|
\end{aligned}
$$

By our assumption, we know that $|w-z| \geq c^{*}$ and $\left|w-z_{0}\right| \geq c^{*}$. Hence from the above estimate, we imply that

$$
\left|n(\gamma, z)-n\left(\gamma, z_{0}\right)\right| \leq \frac{\left|z-z_{0}\right|}{2 \pi\left(c^{*}\right)^{2}} \int_{\gamma}|\mathrm{d} w|=\frac{\text { length of } \gamma}{2 \pi\left(c^{*}\right)^{2}}\left|z-z_{0}\right|
$$

Therefore if z is very close to z_{0}, equivalently if ϵ (the radius of $B\left(z_{0}, \epsilon\right)$) is very small, we have $\mid n(\gamma, z)-$ $n\left(\gamma, z_{0}\right) \mid<1 / 2$. In light that $n(\gamma, z)$ and $n\left(\gamma, z_{0}\right)$ are all integers, we show that $n(\gamma, z)=n\left(\gamma, z_{0}\right)$ must hold. In other words, all points in $B\left(z_{0}, \epsilon\right)$ share same index with respect to γ. Given z_{1} and z_{2} two points in \mathbb{C} and a continuous path l connecting z_{1} and z_{2}, if the intersection of l and γ is empty, then we can cover l by a finite sequence of tiny balls. Meanwhile all points in each tiny disk share same index. Supposing we have two tiny balls in the sequence say B_{1} and B_{2}, then $B_{1} \cap B_{2} \neq \emptyset$. otherwise l is not continuous. all points in B_{1} have same index, denoted by N_{1} and all points in B_{2} have same index denoted by N_{2}. But $B_{1} \cap B_{2} \neq \emptyset$. Therefore $N_{1}=N_{2}$. In other words, if we can connect z_{1} and z_{2} by a continuous path l whose intersection with γ is empty, then z_{1} and z_{2} have same index.

Now we come back to the Cauchy integral formula. From the last lecture, we know that if $n\left(\gamma, z_{0}\right) \neq 0$, then

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i n\left(\gamma, z_{0}\right)} \int_{\gamma} \frac{f(w)}{w-z_{0}} \mathrm{~d} w
$$

From the above arguments, choosing ϵ small enough, then $n(\gamma, z)=n\left(\gamma, z_{0}\right)$ for all z in $B\left(z_{0}, \epsilon\right)$. Hence by Cauchy integral formula, we know that

$$
f(z)=\frac{1}{2 \pi i n(\gamma, z)} \int_{\gamma} \frac{f(w)}{w-z} \mathrm{~d} w=\frac{1}{2 \pi i n\left(\gamma, z_{0}\right)} \int_{\gamma} \frac{f(w)}{w-z} \mathrm{~d} w .
$$

Moreover if s is small enough, we also have

$$
f(z+s)=\frac{1}{2 \pi i n\left(\gamma, z_{0}\right)} \int_{\gamma} \frac{f(w)}{w-(z+s)} \mathrm{d} w
$$

Therefore it holds that

$$
\frac{f(z+s)-f(z)}{s}=\frac{1}{2 \pi i n\left(\gamma, z_{0}\right)} \int_{\gamma} \frac{f(w)}{(w-z-s)(w-z)} \mathrm{d} w
$$

Taking $s \rightarrow 0$, the right-hand side above converges to

$$
\frac{1}{2 \pi i n\left(\gamma, z_{0}\right)} \int_{\gamma} \frac{f(w)}{(w-z)^{2}} \mathrm{~d} w
$$

Hence we know that f is derivable at z and it holds that

$$
f^{\prime}(z)=\frac{1}{2 \pi i n\left(\gamma, z_{0}\right)} \int_{\gamma} \frac{f(w)}{(w-z)^{2}} \mathrm{~d} w
$$

Inductively the higher order derivatives of f can also be calculated. it is the proposition in the following
Proposition 0.1. If f is analytic in Δ where Δ is a disk, then for any natural number k,

$$
f^{(k)}(z)=\frac{k!}{2 \pi i n\left(\gamma, z_{0}\right)} \int_{\gamma} \frac{f(w)}{(w-z)^{k+1}} \mathrm{~d} w
$$

Here γ is a contour in Δ such that $n\left(\gamma, z_{0}\right) \neq 0 . z$ is any point in $B\left(z_{0}, \epsilon\right)$ with ϵ small enough.
From Proposition 0.1, two cheap results can be easily obtained.
Theorem 0.2 (Liouville's theorem). If f is analytic on \mathbb{C} and $|f(z)| \leq M$ for some $M>0$ and all z in \mathbb{C}, then f must be a constant.

Proof. Fixing z in \mathbb{C} and R large enough so that z is in $B(0, R / 2)$. Here $B(0, R / 2)$ is the ball centered at 0 with radius $R / 2$. Then by Proposition 0.1 , we know that

$$
\left|f^{\prime}(z)\right|=\frac{1}{2 \pi}\left|\int_{|z|=R} \frac{f(w)}{(w-z)^{2}} \mathrm{~d} w\right|
$$

Here the abosolute value of the index in Cauchy formula is 1 in that the index of z with respect to the circle $|z|=R$ must be 1 or -1 . Using the above equality, we show that

$$
\left|f^{\prime}(z)\right| \leq \frac{1}{2 \pi} \int_{|z|=R} \frac{|f(w)|}{|w-z|^{2}}|\mathrm{~d} w|
$$

Noticing that z is in $B(0, R / 2)$, so for all w on $|z|=R,|w-z| \geq R / 2$. Applying this estimate together with the fact that $|f| \leq M$ to the above inequality, we know that

$$
\left|f^{\prime}(z)\right| \leq \frac{2 M}{\pi} \frac{1}{R^{2}} \int_{|z|=R}|\mathrm{~d} w|=\frac{2 M}{\pi} \frac{1}{R^{2}} 2 \pi R=\frac{4 M}{R} \longrightarrow 0, \quad \text { as } R \rightarrow \infty
$$

This shows that $f^{\prime}(z)=0$. Since z is arbitrary, therefore $f^{\prime}(z)=0$ for all z in \mathbb{C} which tells us that f must be a constant.

The second theorem is Morera's theorem. It gives us a way to go from continuity to analyticity.
Theorem 0.3 (Morera's theorem). if f is continuous in a domain Ω and for all γ a closed curve in Ω we have

$$
\int_{\gamma} f(z) \mathrm{d} z=0
$$

then f must be analytic.
Proof. Using the condition in Theorem 0.3, we know that

$$
F(z)=\int_{\gamma\left(z_{0}, z\right)} f(w) \mathrm{d} w
$$

is well-defined. here z_{0} is a fixed point in $\Omega, \gamma\left(z_{0}, z\right)$ is a path in Ω connecting z_{0} and z. From the previous arguments, we know that $F(z)$ is analytic and $f(z)=F^{\prime}(z)$. Using Proposition 0.1 , we know that F can be differentiated infinitely many times. So from the relationship $f(z)=F^{\prime}(z)$, we know that f must also be differentiated infinitely many times. So f is analytic.

